GitHub - enceladosaurus/ethics-resources: A collection of media and additional resources related to AI and technology ethics

Created time
Mar 26, 2025 05:02 PM
Posted?
Posted?
notion image
notion image
notion image
notion image
notion image

AI Ethics Resources

A collection of media, content, and additional resources related to AI and technology ethics
Table of Contents

Websites

  • AI Ethicist: a global repository of references and resources related to AI ethics
  • Data & Society: independent, non-profit research organization studying social implications of data and automation
  • Partnership on AI: non-profit interdisciplinary collaboration focused on positive AI outcomes
  • DataEthics: a non-profit, politically independent organization focused on data ethics
  • AI Now Institute: New York University research centre devoted to AI accountability
  • AddAI: Sweden-based interdisciplinary collaboration exploring the impact of AI on society
  • AI Ethics Lab: consulting and research organization focused on AI ethics
  • Living With Data: programme of research on what it's like to live with data, AI, and automation

Talks

Podcasts, YouTube Channels, & Documentaries

Articles and White Papers

Books

  • Data Justice by Lina Dencik, Arne Hintz, Joanna Redden, and Emiliano Treré

Conferences and Events

Published Research

Note: this is not an exhaustive list by any means and reflects some of my own research interests. Feel free to request additional Key Topics tags!
Authors
Title
Year
Key Topics
Ananny & Crawford
2016
Algorithmic Fairness
Aroyo & Welty
2015
Data NLP
Aroyo et al.
2021
Data
Barocas, S.
2014
Data
Barocas & Nissenbaum
2014
Data Privacy Policy
Bartl et al.
2020
NLP LLM Bias Mitigation
Basta et al.
2019
NLP LLM
Berk et al.
2017
Algorithmic Fairness
Bender & Friedman
2018
Guidelines & Recommendations
Bender et al.
2021
NLP LLM
Bertrand & Mullainathan
2004
Social Justice
Birhane, A.
2021
Algorithmic Fairness Feminism
Bolukbasi et al.
2016
NLP Bias Mitigation LLM
Brandusescu & Reia
2022
Data Policy
Brey et al.
2020
Guidelines & Recommendations
Burrell, J.
2016
XAI
Buolamwini & Gebru
2018
Computer Vision Algorithmic Fairness Data
Caliskan et al.
2017
NLP
Chen et al.
2017
Data Privacy
Cho et al.
2022
Computer Vision
Citron & Pasquale
2014
Data
Cooper, J.
2017
Privacy Policy
Crawford & Schultz
2014
Data Privacy Policy
Danks, D.
2019
Guidelines & Recommendations
Davis & Osoba
2016
Privacy Data
Devinney et al.
2022
NLP Bias Mitigation
Diakopoulos, N.
2014
Algorithmic Fairness
Dietvorst et al.
2015
Policy
Dignum et al.
2023
Guidelines & Recommendations
Dillon, S.
2020
Virtual Assistants Feminism
Doshi-Velez & Kim
2017
XAI
Drosou et al.
2017
Data
Du et al.
2022
XAI
Dwork et al.
2011
Algorithmic Fairness
Edwards & Veale
2017
XAI Algorithmic Fairness Policy
Fazelpour & De-Arteaga
2021
Algorithmic Fairness
Floridi & Cowls
2021
Guidelines & Recommendations
Friedler et al.
2016
Algorithmic Fairness
Gebru et al.
2021
Data XAI
Gillespie, T.
2014
Algorithmic Fairness XAI
Grgić-Hlača et al.
2016
Algorithmic Fairness Guidelines & Recommendations
Griesbach et al.
2019
Algorithmic Fairness
Griffin et al.
2023
Algorithmic Fairness Policy
Grimmelmann & Westreich
2017
Data Algorithmic Fairness
Gonen & Goldberg
2019
NLP LLM
Goodman, B.
2016
Algorithmic Fairness
Guo & Caliskan
2021
NLP LLM
Haggerdy, K.
2009
Policy Surveillance
Hanna et al.
2019
Critical Race Theory Algorithmic Fairness
Hardt et al.
2016
Supervised Learning Algorithmic Fairness
Helveston, M.
2016
Data Privacy
Hine & Floridi
2022
Policy
Hutchinson & Mitchell
2019
Algorithmic Fairness
Hutchinson et al.
2021
Data
Jacobs & Wallach
2021
Algorithmic Fairness
Jacovi et al.
2022
XAI
Jobin et al.
2019
Literature Review
Jones, M.
2017
Policy Algorithmic Fairness
Joseph et al.
2016
Algorithmic Fairness RL
Jung et al.
2017
Guidelines & Suggestions
Kaptein & Eckles
2010
Policy
Kerr et al.
2020
Policy
Khan & Hanna
2022
Data Guidelines & Recommendations
Kleinberg et al.
2016
Algorithmic Fairness
Kochelek, D.
2009
Data Privacy
Kosinski et al.
2013
Privacy Data
Kroll et al.
2017
Algorithmic Fairness
Kurita et al.
2019
NLP LLM
Lee, M.
2018
Algorithmic Fairness
Lippert-Rasmussen, K.
2010
Data
Lipton, Z.
2016
XAI
Liu et al.
2021
Privacy
Matthews et al.
2021
NLP LLM
McGregor, S.
2020
Datasets
Mehrabi et al.
2022
Algorithmic Fairness
Miceli et al.
2022
Data Guidelines & Recommendations
Mitchell et al.
2019
Data XAI
Mueller, M.
2022
Guidelines & Recommendations
Nadeem et al.
2020
NLP LLM Datasets
Nangia et al.
2020
NLP LLM Datasets
Prabhakaran et al.
2022
Algorithmic Fairness Guidelines & Recommendations
Prabhu & Birhane
2020
Computer Vision Data
Raji & Buolamwini
2019
Algorithmic Fairness
Raji et al.
2021
Algorithmic Fairness Policy Guidelines & Recommendations
Ryan & Stahl
2020
Guidelines & Recommendations
Sandvig et al.
2014
Algorithmic Fairness Guidelines & Suggestions
Selbst et al.
2019
Algorithmic Fairness
Sloane et al.
2020
Guidelines & Recommendations
Suresh et al.
2021
Algorithmic Fairness
Swedloff, R.
2014
Data Algorithmic Fairness
Taddeo & Floridi
2018
Guidelines & Recommendations
Tene & Polonetsky
2017
Algorithmic Fairness
Thylstrup, N.
2022
Data Privacy
Tsamados et al.
2021
Algorithmic Fairness
Vakkuri et al.
2019
Guidelines & Suggestions XAI
Webster et al.
2020
NLP Bias Mitigation LLM
Whitman, M.
2020
Data
Wu & Zhang
2017
Algorithmic Fairness Computer Vision
Zarsky, T.
2015
Privacy XAI
Zarsky, T.
2013
Data Privacy Policy
Zhang & Zhao
2020
Algorithmic Fairness
Zhang et al.
2018
Bias Mitigation
Zhao et al.
2017
NLP Bias Mitigation

Contact